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Executive Summary 
 
The European Commission’s Directorate-General for Communications Networks, Content, and Technology 
initiated a consultation process in late 2022, establishing the “Software-Defined Vehicle of the Future (SDVoF) 
initiative”. The initiative launched its roadmap and vision document under the Chips Joint Undertaking (CHIPS 
JU)-funded FEDERATE Coordination and Support Action (CSA) in April 2024 [27]. The document addressed the 
European perspective on the rapidly changing automotive software industry market, highlighting key technical 
challenges such as the need for successful abstraction of vehicles' hardware components for software 
development, and the requirement for novel toolchains, middleware, and API solutions. The initiative has 
collaborative Research, Development, and Innovation (RDI) projects under the European Commission funding 
frameworks that focus on creating essential building blocks for the future software-defined vehicle.  
 
In this Gap Analysis and Technology Forecast Report, Version 2, we highlight the academic and industrial 
perspectives on the key building blocks required to define, implement, and evaluate the software-defined 
vehicle concept in practice. We focus primarily on areas where significant gaps are identified. First, we discuss 
proposed SDV architectures and their challenges in terms of interoperability and paradigm shift from 
monoliths to microservices. Second, we analyse vehicles as a part of a broader continuum with other vehicles, 
roadside infrastructure, and edge-cloud computing capabilities, as future API developments will also require 
changes in the supporting systems and resources. Thirdly, we address validation and verification as integral 
parts of the SDV development pipeline, as vehicular software must be compatible with real-world 
complexities.  
 
The automotive industry is undergoing a significant shift from monolithic to microservices, necessitating new 
architectures, interoperability solutions, and collaborations among various stakeholders. This shift requires 
flexible, service-oriented architectures, real-time data processing, and robust cybersecurity frameworks to 
support the increasingly complex and connected nature of traffic and vehicular systems. We emphasise that 
overcoming technical challenges, such as ensuring seamless interoperability between various components, 
platforms, and services, is crucial for the widespread adoption and economic success of SDVs. Creation, 
management, and governance of engaged ecosystems and collaborative efforts in building non-differentiating 
building blocks will enable collaboration and foster innovation in the future of autonomous and connected 
vehicles. 
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Overview 

Purpose of this document 
This document is the official Deliverable “D2.7 Technology Forecast Report” as promised in the proposal.   

Due to the importance of the topic “Software Defined Vehicle of the Future”, the associated challenges, and 
earlier “Vision and Roadmap” publication (April 2024), this technology forecast and gap analysis document 
was made.  

  
The published document is available under the link:  
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1 Introduction   

 

1.1 Software-Defined Vehicle: Towards Programmable Interfaces 
 
Modern cars incorporate technologies such as automatic braking, Cooperative Adaptive Cruise Control, lane 
departure prevention, and suggestions for charging stations, among others, to support drivers’ cognitive 
abilities and reduce the risk of accidents. Despite the technological advancement, completely software-
defined vehicles with accessible toolchains and APIs are still under development. Most in-vehicular sensors 
and interfaces are brand-specific or closed, limiting access to data, computing, and networking capabilities and 
thereby hindering, for example, the development of vehicular machine learning and artificial intelligence 
(ML/AI) applications. To enable connected vehicles to utilise all the available data sources, AI/ML computing 
resources, and networking capabilities, general interfaces and software platforms must be defined [27,87]. To 
reach this goal, vehicles must enable real-time computing, communication, and data resources for 
programmable interfaces. The current vehicular computing environment is still vendor-fragmented. It lacks 
practical and general interfaces and software systems that enable connected vehicles to utilise all the available 
data sources, AI/ML computing resources, and networking capabilities. 
 
Connected vehicles and vehicular computing offer a potential solution for providing services and applications 
to drivers and in various traffic situations [7,56]. With increased networking and computing capabilities, 
vehicles can perform challenging inference and learning tasks to support drivers’ cognition and provide 
additional information for route planning, intelligent charging, and driving safety. Such intelligent systems 
require training data, which can be provided by in-vehicle sensors and external databases. However, how to 
make this information available, processed, and utilised in a challenging real-time and mobile environment is 
still an open question. The development of vehicular edge [7,18] is foreseen to enable real-time, mission-
critical, context-aware, and efficient intelligent applications. Such applications will support fully autonomous 
driving, which is known to be hazardous in imperfect conditions, and enable the driver to interact with the 
automation and regain control of the vehicle when required. In addition, many non-safety-critical applications 
will benefit from novel software interfaces. 
 
Intelligent driving support and autopilot-driver interaction require machine learning (ML) and artificial 
intelligence (AI) solutions. The existing systems usually utilise data from in-vehicle sensors [18], such as 
cameras, LiDARs, radars, and speed meters [37, 77]. This information can be used to, for example, improve 
lane [66] and road pothole [38] recognition. Solutions for detecting drivers’ behaviour while using 
smartphones during driving [120] and drunk driving [70] have been explored. However, the results underline 
that human drivers’ perception and reasoning still maintain an advantage compared to fully automatic vehicles 
[101]. Different services and data sources are needed to understand the whole picture of driving performance 
and safety. Local real time computing can enhance drivers’ situational awareness by allowing them to see 
"around the corner" and detect hazardous situations. To enable connected vehicles to utilise all the available 
data sources, AI/ML computing resources, and networking capabilities, general and open interfaces and 
software platforms must be defined [27, 87]. 
 
A software-defined approach to configuration, orchestration, and maintenance of the required sensors and 
actuators, data processing, storage, and network resources, and the resulting dynamic and complex systems 
of interacting vehicles (with their sub-components), edge nodes, and cloud services is required to make the 
vehicle-edge-cloud continuum possible in the first place. Recent developments in software-defined solutions 
and reference architectures for vehicular and edge-cloud computing have been proposed [87]. The concept of 
the software-defined vehicle is required to manage the numerous electronic control units, sensors, and their 
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connections through in-vehicle networks alone [28, 43]. Furthermore, the software-defined networking 
approach is a prerequisite for managing vehicular ad-hoc networks of connected vehicles, which are necessary 
for the evolving smart traffic and transport systems [20]. The offloading and external data services then require 
software-defined, multi-access edge-cloud solutions [8,119] to be dynamically and scalably orchestrated with 
the vehicular environment in a secure manner. 

 

1.2 Project Setup and Initiatives 
 
Initially, we identify and define the key initiatives behind the results discussed in this article. First, the European 
Software Defined Vehicle of the Future (SDVoF) Initiative is led by the European Commission’s Directorate-
General for Communications Networks, Content, and Technology. It emphasises collaboration among 
European Original Equipment Manufacturers (OEMs) and suppliers, including those in the semiconductor 
industry. FEDERATE, funded under the Chips Joint Undertaking (CHIPS JU) framework, is a Coordination and 
Support Action (CSA) that supports the SDVoF initiative by promoting the decision-making process, fostering 
the collaboration between projects, and ensuring alignment with European actors’ strategic objectives. Both 
initiatives engage in collaborative Research and Innovation Actions (RIA) to achieve their goals, funded by 
either the Horizon EU framework or national funding resources. The current list of consortium partners and 
associated members of different projects and initiatives can be found on the FEDERATE website 
(https://federate-sdv.eu/). This article reflects the SDVoF and FEDERATE’s set Vision and Roadmap [27] and 
extends the Gap Analysis and Technology Forecast Reports published in September 2024 [85]. 
 

 
Figure 1: An overview of the FEDERATE SDV building block categories (Hardware/Software Abstraction, Middleware and 
API Framework, and Automated DevOps Toolchain) and corresponding themes discussed in this paper. 
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1.3 Data Collection Methods 
 
This article aims to define and present key challenges in approaching the SDV era within the automotive 
industry. The SDVoF initiative and FEDERATE project consortiums include the leading European automotive 
OEMs (e.g. Mercedes-Bentz, BMW, Renault, VW, Cariad, Stellantis, Volvo Trucks, Renault, and Ford Otosan), 
semiconductor companies (e.g. ARM, NXP, Infenion, and ST Microelectronics), automotive software 
businesses (e.g. Bosch, ETAS, Accenture, Alkalee, Continental, Electrobit, Valeo, ZF, and TTTECH), industry 
associations and foundations (e.g. Eclipse Foundation, AUTOSAR, COVESA, VDA, and EUCAR), and academic 
institutions around the continent. As the projects were being drafted, a series of workshops came together to 
define the common goals, establish a shared understanding, and articulate a vision for the future. Based on 
these discussions and documentation, a series of deliverables has been published. For this research article, 
these published documents serve as the primary data source. 
 
Second, we address the identified SDV Building Blocks (see below) from the FEDERATE results. The building 
blocks are publicly documented in the FEDERATE Github and any of the project partners or associated 
members can participate in defining them, either from an industrial or academic perspective. Considering the 
broad representation of the automotive industry and OEMs, we can cautiously claim that the identified 
building blocks represent the European perspective on SDV development. The building blocks are regularly 
updated and discussed in the telco series organised by the FEDERATE project for the partners and associated 
members. 
 
Third, the FEDERATE scientific working group has organised a series of talks and presentations for the partners 
and associated members. These presentations and their follow-up discussions formed a group of researchers 
from the academy and R&D operations who were involved in providing their perspectives and experiences for 
defining the key challenges. In this article, we present the results of these discussions, combined with the 
public documentation and building block definitions from the FEDERATE project. The building blocks and 
themes they represent are also surveyed from the perspective of the latest research literature. 
 

1.4 Building Blocks for Software-Defined Vehicles 
 
Building blocks (BB) are non-differentiating reusable components that enhance the development of the 
automotive software stack and complementary parts on the edge-cloud continuum [27]. Agreeing on these 
building blocks and maintaining them continuously are the key objectives of the SDVoF initiative and related 
research, innovation, and development projects. By building this shared knowledge and agreement with 
"atomic" services, the critical building blocks, we expect to have commonly agreed concepts, components, and 
interfaces that are highly dependable, robust, secure, and well-tested. Initially, three main categories of 
building blocks were considered. However, these will be defined more robustly and specifically when the RIA 
projects progress. The main building block categories are: 

• Hardware/Software Abstraction: These building blocks separate hardware components from 
software, allowing the software to function independently of the underlying hardware. They facilitate 
interoperability and enable efficient integration across various hardware platforms. 

• Middleware and API Framework: These building blocks provide software tools that connect the 
hardware and application layers, providing essential services like communication, security, and data 
management. They ensure seamless interaction between different software modules. 

• Automated DevOps Toolchain: These building blocks provide tools that automate the software 
development lifecycle, including continuous integration, testing, deployment, and monitoring. The 
goal is to speed up development and ensure software quality. 
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This paper analyses the state of the art of the mentioned building block categories from a software engineering 
perspective, considering gaps in knowledge and technical implementations that should be developed soon 
(see Figure 1). We cover Software-Defined Vehicle architectures and the interoperability aspects of 
hardware/software abstraction. We cover the Edge-Cloud Continuum, roadside infrastructure readiness, and 
vehicle-to-vehicle and in-vehicle communication aspects as the critical building blocks for seamless integration 
into vehicular computing space. Finally, we discuss validating and verifying software using automated DevOps 
toolchains and building healthy software ecosystems to ensure the vehicular software life cycle and the quality 
of end products. As the SDV development will require transformation from monolithic software components 
and silo providers to microservice-based architectures and agile ecosystems, we discuss the transformation 
path, aiming to provide not only technical capabilities but also integrity, accountability, and dedication towards 
the shared goal. 
  



 

 
 

   12 / 44   

 

 

 

2 Software-Defined Vehicle Architectures 
 
This section provides an overview of the SDV architectures that should be considered in the future. Software-
defined vehicles represent a paradigm-shifting evolution in electrical and electronic (E/E) architectures, 
offering a significant increase in flexibility compared to traditional system architectures. This flexibility is crucial 
for supporting the rapid development cycles demanded by autonomous driving technologies, where the 
separation of software and hardware functions allows for more dynamic and adaptable vehicle systems [51, 
57]. 
 
Traditional distributed E/E architectures typically feature tightly coupled hardware and software optimised for 
specific feature sets. As such, the industry is increasingly moving towards SDVs, which utilise new E/E 
architectures with high-performance computing capabilities [98, 134]. Containerisation and virtualisation are 
essential technologies within the SDV framework, facilitating rapid software deployment and updates crucial 
for maintaining the performance of intelligent vehicles [128]. Moreover, Model-Based Systems Engineering 
(MBSE) is increasingly employed in the automotive industry to manage the complex design processes of SDVs. 
MBSE addresses the resource allocation challenges by formally describing vehicle resources, safety 
requirements, and optimisation objectives [14]. This shift brings opportunities and challenges, particularly in 
vehicle architecture, cybersecurity, and system integration. 
 

2.1 Service-Oriented Architectures (SOA) in Automotive 
 
SOAs are emerging as a promising solution to the challenges posed by the increasing complexity of automotive 
software systems. SOA enables the dynamic integration of software components, allowing for more flexible 
and scalable vehicle architectures. Unlike traditional tightly coupled systems, SOA decouples software from 
hardware dependencies, emphasising software-driven design and modularity. This separation facilitates easier 
updates, component reuse, and integration of third-party services without significant system overhauls, 
contributing to faster development cycles and reduced maintenance costs [62]. 
 
With software becoming the central focus, SOA supports the modular development of functionalities, allowing 
manufacturers to dynamically introduce new features and updates, improving adaptability throughout a 
vehicle’s lifecycle. Research has shown that SOA can significantly enhance the functional suitability and 
scalability of automotive software systems. However, implementing SOA in the automotive domain also 
presents challenges, particularly in ensuring the system’s security, safety, and reliability. Despite these 
challenges, SOA is gaining traction as a critical architectural approach for future automotive systems, offering 
a way to manage the complexity of SDVs while maintaining high performance and security standards. 
 

2.2 Mainstream Classic Architecture 
 
AUTOSAR Classic Platform: The AUTOSAR Classic Platform has been the cornerstone of automotive software 
development for over a decade. It provides a standardised framework for the development of deeply 
embedded systems, with an emphasis on safety, security, and predictability. The layered architecture 
facilitates modular development, allowing for the seamless integration of various hardware and software 
components, essential for meeting stringent real-time requirements [16].   
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2.3 Popularized Architectures 
 
Adaptive AUTOSAR: This builds upon the classic platform by introducing flexibility and adaptability, critical for 
modern vehicles that require dynamic software updates and re-configurations. This architecture supports the 
complex software demands of autonomous driving and connected car technologies. By providing standardised 
services and APIs, Adaptive AUTOSAR facilitates the integration of new functionalities as vehicle software 
continues to evolve [15]. However, Adaptive AUTOSAR faces challenges related to achieving determinism [76]. 
 
Automotive Grade Linux (AGL): This open-source initiative seeks to create a unified software platform for 
connected cars. Supported by significant manufacturers, AGL is noted for its flexibility and rapid development 
cycle. Its influence extends beyond IVI systems to cover telematics and instrument clusters, making it a 
versatile and integral part of the automotive ecosystem [70].  
 
Android Automotive OS: Google’s Android Automotive OS is gaining traction due to its robust ecosystem and 
extensive integration capabilities. It supports extensive customisation and third-party app development, 
making it a versatile platform for infotainment and broader vehicle system integration. Its user-friendly 
interface and the leverage of the expansive Android developer community enhance its appeal across the 
automotive industry [93].  
 
Robot Operating System 2 (ROS 2): ROS 2 [75] is an open-source framework used for developing robotic 
applications, with growing adoption in automotive systems, particularly in autonomous driving [10,97,115]. 
Compared to its predecessor, ROS 2 offers an improved communication infrastructure, enhanced security, and 
better support for real-time operations [75]. Its modularity, flexibility, and middleware abstraction facilitate 
the integration of sensor fusion, path planning, and control algorithms in self-driving vehicles. However, 
despite its advancements, ROS 2 still faces challenges in achieving reliable real-time performance and 
deterministic behaviour [21, 22], which are essential for safety-critical automotive systems. 
 
Automotive Service-Oriented Architecture (ASOA): ASOA [54] addresses the limitations of traditional 
monolithic automotive architectures. It employs a runtime-integrated service-oriented approach, enabling 
software components to operate as platform-agnostic services that are dynamically connected through a 
central orchestrator. This design supports updates, replacements, and reuse of services, promoting 
adaptability and modularity. ASOA has been applied in a full-scale automated vehicle [119], highlighting its 
potential for use in networked systems for connected and automated vehicles (CAVs). 
 
It is worth mentioning that the Android Open Source Project (AOSP) and Android Automotive OS (AAOS) are 
part of Google’s SDV Ecosystem. The AOSP forms the open-source foundation for Android, offering a flexible 
and modifiable platform that manufacturers and developers can leverage to build custom systems. AOSP 
cannot use Google Services, but it can use Android Runtime for APK execution. Android Automotive OS (AAOS) 
extends AOSP by integrating vehicle-specific features, such as the Vehicle Hardware Abstraction Layer (HAL). 
This enables direct communication between the operating system and car hardware components such as 
infotainment, HVAC, and other in-car functionalities. Unlike AOSP, AAOS is specifically tailored for automotive 
applications, offering a comprehensive framework for in-car system development. 
 
On the other hand, AAOS does not include Google Services unless Car OEMs sign a separate contract. However, 
manufacturers can enhance AAOS further by incorporating Google Automotive Services (GAS), a proprietary 
suite of services that includes Google Maps, Google Assistant, and the Google Play Store. While AAOS functions 
independently, providing automakers the flexibility to customise and develop unique in-vehicle experiences, 
integrating GAS introduces Google’s services ecosystem, enriching user experience. This integration, however, 
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requires a licensing agreement, making GAS optional but highly valuable for delivering seamless connectivity, 
app availability, and advanced navigation capabilities, enhancing AAOS beyond its native feature set [88].  
 
Safe Open Vehicle Core (S-CORE) an Open-Source Ecosystem: Eclipse S-CORE: Establishing an Open Source 
Ecosystem for Software-Defined Vehicles. The growing complexity of Software-Defined Vehicles (SDVs) 
necessitates a shift toward modular, scalable, and standardised software architectures. The E/E architectures 
are also undergoing a change towards centralised E/E architectures that provide so-called high-performance 
computing units. The Eclipse S-CORE (Safe Open Vehicle Core) project is in its early stages of development. It 
aims to address this challenge by developing an open-source core software stack that bridges the gap between 
the new operating system used, which supports multi-threaded schedulers with memory and resource 
separation in processes, and the application layers that require a common interface with functions and 
features for the different application domains. By following a collaborative, non-differentiating development 
approach aligned with ASPICE, ISO 26262, ISO 21434 and ISO PAS 8926, S-CORE seeks to establish a high-
quality, safety-compliant runtime solution that is both cost-efficient and scalable. The overarching goal is to 
"Build the Best Automotive Runtime Solution Only Once and as an Open-Source Solution", allowing industry 
stakeholders to converge on a shared, optimised software stack instead of maintaining multiple proprietary 
alternatives. 
 
To achieve this, Eclipse S-CORE is actively working on creating an open-source ecosystem that extends beyond 
code-sharing. The project focuses on collaborative governance, standardised interfaces, and best practices to 
ensure interoperability and cross-industry adoption. By fostering an environment where OEMs, Tier 1 
suppliers, and technology providers can co-develop a common SDV runtime stack, the initiative aims to drive 
efficiency, reduce costs, and accelerate innovation. As the project progresses, its success will depend on broad 
industry participation, the refinement of development methodologies, and the adoption of open innovation 
principles that can redefine how automotive software is developed and maintained. 
 

2.4 Latest Developments and State-of-the-Art Architectures 
 
Microservice-Based Architectures: A major trend in SDV architectures is the shift towards microservices, 
where the vehicle’s software is broken down into small, independent services that can be updated and scaled 
independently. This architecture supports continuous integration and deployment (CI/CD), enabling 
manufacturers to roll out updates and new features more frequently with reduced risk of disrupting existing 
functions [41]. 
 
Containerised Solutions: To manage these microservices effectively, containerisation platforms like 
Kubernetes are employed. These platforms provide the necessary infrastructure for deploying, managing, and 
scaling services across various environments—on the vehicle, at the edge, or in the cloud. This approach aligns 
with the broader industry trend towards cloud-native technologies, enhancing the resilience and scalability of 
automotive software architectures [65].  
 
AI-Driven Architectures: Artificial Intelligence (AI) is becoming increasingly integral to SDV architectures, 
particularly in autonomous driving systems and advanced driver-assistance systems (ADAS). AI-driven 
architectures enable real-time decision-making and predictive maintenance, improving the vehicle’s 
adaptability to changing conditions and enhancing safety [13, 50].  
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2.5 Vision and Roadmap Towards Microservices 
 
 

 
 
To this end, the FEDERATE project and SDVoFs initiative advance these state-of-the-art principles by 
integrating a holistic approach that builds upon the foundational concepts of microservices and modular 
architecture and extends them to address the specific challenges and opportunities presented by the next 
generation of vehicles. For instance, the project’s approach extends beyond traditional microservices by 
considering the potential of dynamic service orchestration, which enables the vehicle’s software stack to adapt 
in real-time to varying conditions, such as changes in network connectivity, cybersecurity threats, or evolving 
user preferences. This capability is particularly critical in autonomous and connected vehicles, where the ability 
to respond to and recover from unforeseen events rapidly is a crucial determinant of safety and reliability. 
 
Thus, this transition to microservices and modularity is well-aligned with the Layered Tooling Reference 
Architecture for SDVs, promoting a structured software development approach (see Figure 2). This 
architecture typically includes the Hardware Abstraction Layer, Operating System Layer, Middleware Layer, 
Application Layer, and User Interface Layer. Each layer has specific tools and frameworks designed to support 
the development, testing, and deployment of microservices, ensuring optimised operations across the entire 
vehicle software stack [40]. Some reference architectures, such as RobotKube [67], already exist for 
orchestrating containerised microservices in large-scale multi-robot systems using Kubernetes and ROS. 
RobotKube is built on an event-driven architecture and can automate software deployment, configuration, 
and data collection across SDVs and other connected entities in Cooperative Intelligent Transport Systems (C-
ITS). Key components include an event detector and an application manager that orchestrates software based 
on real-time data. Open challenges include reducing orchestration latency, ensuring scalability and 
compatibility in heterogeneous systems involving diverse hardware and software platforms, and efficiently 
managing resources in environments with limited computational power, memory, and network bandwidth. 
 
 
 
 

Figure 2: An example of the Layered Tooling Reference Architecture for SDVs. 
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2.6 Key Challenges 
 

• Complexity Challenge: The complexity of transitioning from traditional, monolithic architectures to 
dynamic, service-oriented architectures provides integration and transformation challenges, 
especially given the reliance on tightly coupled hardware and software systems. 

• Cybersecurity Challenge: The architecture should provide security already on the design level, as more 
interconnected, software-based platforms make vehicles more vulnerable to cybersecurity threats. 

• Safety and Security Challenges in Automotive Software Systems: the SOA Perspective. One of the 
challenges in applying a dynamically orchestrated SOA in SDVs lies in managing the inherent trade-offs 
between flexibility and strict real-time performance in safety-critical functions. While SOA provides 
modularity and scalability, allowing services to be composed and reconfigured dynamically, these 
benefits introduce risk factors with the deterministic execution required in hard real-time systems. In 
the context of functions such as brake control, where the latency of any operation could make a critical 
difference, the orchestration of services introduces variability in execution times and communication 
latencies, making it challenging to guarantee the fixed response times necessary for critical automotive 
operations. In this vein, academia and industry are investigating hybrid architectures that combine the 
benefits of SOA with tightly controlled, deterministic pathways for critical functions. These hybrid 
systems aim to preserve the modularity of SOA while isolating real-time, safety-critical processes to 
ensure they meet the stringent timing and reliability requirements essential for automotive safety 
[100]. 

• Resource Allocation Challenge: Efficient resource allocation presents a significant challenge for 
service-oriented architectures in SDVs. Quick adaptability requires the optimal assignment of 
computing resources, including scheduling tasks and mapping services to CPU and GPU cores, 
especially when utilising AI component deployment for AI-based functionalities, and managing 
communication priorities between services. However, the limited availability of resources necessitates 
careful optimisation to ensure both performance and reliability. This requires a software framework 
that supports dynamic resource orchestration while making resource constraints and dependencies 
visible. Solutions like optimisation-based resource allocation [55] offer strategies to minimise power 
consumption and execution times of critical effect chains by integrating scheduling and resource 
mapping into a unified optimisation model. 

• Architectural Challenge: Integration of real-time information from digital transportation 
infrastructure in the overall architecture is currently limited to predefined vehicle-to-everything (V2X) 
communication standards. The holistic development and deployment of novel functions, including 
those for vehicles and infrastructure, are not considered in current architectures. 

• AI/ML Challenge: SDVs rely on AI/ML for various functionalities. However, deploying AI/ML in safety-
critical automotive environments and systems requires significant work and development in terms of 
data management and quality aspects of AI/ML, such as high-quality data labelling and annotation for 
model training, data bias and mitigation strategies, addressing continuous learning and adaptation AI 
systems from new data collected in the real-life environment while maintaining safety and stability 
[116]. Some of these aspects, particularly those related to AI/ML-based perception and decision-
making, are already addressed in ISO 21448 (Safety of the Intended Functionality – SOTIF), which 
provides a useful framework for mitigating risks beyond hardware/software failures. However, 
regulation-related aspects are becoming increasingly in demand as AI/ML models are being regulated 
by stringent policy requirements and as the trustworthiness and explainability of AI, which are still 
relatively nascent domains, gain attention [11]. 

• Interoperability Challenges: As SDVs are complex ecosystems involving diverse components 
(hardware, software) from many vendors, interoperability is critical for seamless integration and 
functionality across these components. For instance, heterogeneous architectures with varying 
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processing capabilities and communication protocols pose significant challenges for software and 
hardware integration. Furthermore, although open platforms and open-source architectures can 
provide benefits such as fostering interoperability and reducing vendor lock-in, security and quality 
concerns are inherent challenges of the open-source model. The harmonisation of open-source and 
commercial components introduces additional architectural complexity [56]. 
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3 Interoperability Aspect in SDVoFs 
 
Interoperability is a cornerstone of modern industrial and automotive systems [4], particularly in the context 
of SDVs. As the automotive industry shifts toward increasingly complex and interconnected digital 
environments, ensuring that different systems, components, and software solutions work seamlessly together 
is critical for innovation and efficiency. For example, the Eclipse Arrowhead framework, known for its Service-
Oriented Architecture-Based interoperability and microservices, provides a robust architecture that facilitates 
seamless interaction by enabling scalable and interoperable automation solutions. Such frameworks can 
enhance the integration of diverse systems across the automotive value chain within the ecosystem, ensuring 
that different stakeholders—from OEMs to software developers—can collaborate effectively. 
 
Seamless exchange of data between two or more systems or components and the use of them as meaningful 
information is what is defined as interoperability [99]. The definition of interoperability has evolved 
considerably over the last two decades, with the development of numerous technologies, application systems, 
and multidisciplinary approaches to engineering. Recent works [79] related to context-aware software systems 
(CASS) have discussed an interoperability theoretical framework (ITF), which examines interoperability from 
two aspects: structural and behavioural. The structural one considers context, perspective, levels, purpose, 
and attributes, which compose interoperability. The behavioural aspect deals with its evaluation methods, 
challenges, issues, and advantages. SDVs have their basic vehicle controls and advanced autonomous driving 
functions, mainly depending on the software that must interoperate efficiently. 
 
In the current era, SDVs incorporate diverse hardware and software from suppliers that follow numerous 
communication protocols to interact with the external world, i.e. environment and infrastructure. Therefore, 
studying interoperability in this context is a technical necessity, laying the foundation for innovative research 
and development. The need for open and interoperable platforms has necessitated that classical architectures 
in SDVs adopt SOA and microservice architectures. To ensure dynamic interactions between in-vehicle and 
external systems, monolithic software is broken down into independent services, developed and deployed 
without disrupting the overall vehicle system [94].  
 
 

3.1 Six-Tier Interoperability Framework for SDVs 
 
Different components, data sources, and interfaces in Software-Defined Vehicles are often sourced from 
various vendors, leading to compatibility issues. Therefore, interoperability is crucial in ensuring the 
integration of heterogeneous systems, adapting legacy systems, facilitating real-time communication, 
enabling third-party integration, ensuring scalability, promoting cross-system compatibility, and allowing for 
modular software updates, among other benefits [3]. Cohesive interaction among different systems, 
components, and platforms requires a multi-layered concept of interoperability. The FEDERATE project and 
SDVoF initiative consider multi-dimensional facets of interoperability in its SDV architecture. Each level of 
interoperability contributes to seamless interactions with cloud services and V2X networks, facilitating 
efficient and secure communication. 
 
The analysis of different levels of interoperability for SDVs is provided in Table 1. This Six-Tier Interoperability 
Framework for Software-Defined Vehicles provides a comprehensive approach to ensure seamless 
communication and coordination across systems [2]. It begins with technical interoperability, which focuses 
on the communication between hardware and software, and progresses through syntactic and semantic 
interoperability to ensure that data is correctly formatted and interpreted. Pragmatic interoperability 
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addresses the contextual use of data, while dynamic interoperability ensures real-time adaptability and 
flexibility. Finally, organisational interoperability emphasises collaboration between stakeholders, such as 
manufacturers and regulators, to promote cohesive development and compliance across the SDV ecosystem. 
 

 

 

3.2 Key Challenges 
 

• Managing the Complexity: Vehicles consist of diverse components and systems, which often come 
from various vendors and follow different protocols, making it difficult to ensure compatibility. 

• Longevity and Legacy: At a certain level, legacy systems must be adapted to new service-oriented 
architectures to maintain backward compatibility. 

• Real-time communication between in-vehicle systems, external infrastructure, and cloud platforms is 
necessary to enable SDVs to function effectively in real-world environments. 

  

Table 1:  Six-Tier interoperability Level Framework for SDVoF. 
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4 In-vehicle Communication 
 

4.1 Ethernet and Service-oriented Architectures 
 
In software-defined vehicles, Ethernet plays a central role as the backbone of service-oriented architectures, 
effectively replacing legacy communication buses like CAN in core network functions [118]. It is increasingly 
adopted in automotive applications due to its high data rate and flexibility. It is well-suited for modern, data-
intensive systems, such as over-the-air (OTA) updates and camera systems in autonomous vehicles. Its 
scalability and ability to handle various traffic classes, including real-time and best-effort communication, 
enable the integration of diverse subsystems into a unified network. This reduces the complexity of current 
heterogeneous in-car networks and supports the growing demand for reliable, high-bandwidth 
communication, which is essential for advanced driver assistance and infotainment systems [111]. 
 
Technologies such as TSN and middleware protocols like SOME/IP and DDS enable deterministic, real-time 
communication and dynamic service discovery, which are critical for the scalability and flexibility of SDV 
platforms [74,85,135]. These protocols support publish-subscribe and request-response communication 
patterns, making them ideal for dynamically reconfigurable and updatable automotive systems. Integrating 
Ethernet with SDN enhances the network’s adaptability, allowing dynamic reconfiguration and centralised 
management of services at runtime [48]. As vehicles continue to evolve into increasingly complex, 
distributed computing platforms, Ethernet-based SOA enables the deployment, update, and scaling of 
software functions independently across ECUs, paving the way for continuous delivery models in automotive 
software development [136]. 
 

4.2 CAN Protocols 
 
The Controller Area Network (CAN) protocol has been the vehicle bus standard since the 80’s, enabling 
communication between microcontrollers and devices without requiring a central host computer. Initially 
designed for automotive use by Bosch [60], it has since expanded into various industrial applications. The 
protocol operates on a multi-master, multi-drop network, where any node can initiate communication with 
another node. Messages are assigned unique priorities via their identifiers, and when two nodes transmit 
simultaneously, the message with the higher priority (i.e., the lower identifier number) is transmitted first, 
while the other waits and retries later. This mechanism ensures reliable communication, making CAN suitable 
for real-time, safety-critical vehicle systems [103]. The physical layer of the CAN bus transmits data over 
twisted-pair cables, utilising differential signalling to reduce electromagnetic interference and enhance 
reliability. Each CAN message consists of several fields: the identifier (ID), which determines priority; a control 
field that specifies data length; the actual data payload; a CRC (Cyclic Redundancy Check) field for error 
detection; and an acknowledgement field. This frame structure ensures data integrity during transmission [83]. 
 
Several key CAN protocols are crucial to the vehicular industry. The CAN 2.0 standard, which includes versions 
2.0A and 2.0B, remains foundational in automotive communication, facilitating data exchange between 
Electronic Control Units (ECUs). CAN 2.0A uses 11-bit identifiers, while CAN 2.0B allows for 29-bit identifiers, 
ensuring flexibility and compatibility across various systems. These can be used on the same bus as long as no 
extended frames are sent by controllers using CAN 2.0B [1]. As vehicle systems became increasingly complex, 
CAN FD (Flexible Data Rate) emerged as a solution, offering higher data transmission speeds and larger payload 
capacities. This advanced protocol reduces wiring complexity and supports more sophisticated in-vehicle 
functions, making it a preferred choice for modern automotive systems [124]. CAN FD data rate can reach up 
to 8 Mbps, and its payload can be extended up to 64 bytes, compared to the traditional 8 bytes in CAN 2.0. 
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This improvement significantly enhances data handling for applications like advanced driver assistance 
systems (ADAS), which require fast and reliable communication [29]. 
 

4.3 Other In-vehicle Communication Protocols 
 
Other in-vehicle communication protocols have emerged to meet specific needs: 

• LIN (Local Interconnect Network) is a low-cost, single-wire protocol designed for simple, low-speed 
communication tasks such as controlling seat adjustments or window lifts [109]. 

• FlexRay is a high-speed, time-triggered protocol used in safety-critical applications such as electronic 
stability control (ESC) and adaptive cruise control [109]. 

• MOST (Media Oriented Systems Transport) is designed explicitly for infotainment systems, providing 
high-bandwidth communication for audio, video, and multimedia data [109]. 

 
CAN XL represents a further advancement, increasing data capacity to 2048 bytes and offering higher 
bandwidth to handle the growing data demands of modern automotive applications, such as autonomous 
driving [66]. The ISO 11898 standards also govern essential aspects of CAN implementation. ISO 11898-2 
supports high-speed communication, while ISO 11898-3 ensures fault tolerance in low-speed environments, 
both of which are important for reliable in-vehicle networking [63]. Another significant development is ISO-TP 
(ISO 15765-2), which extends CAN’s data capabilities to handle larger-scale messages, primarily used in vehicle 
diagnostics [109]. In heavy-duty vehicles such as trucks and buses, SAE J1939 is widely used for communication 
and diagnostics, providing a standardised framework for heavy-duty vehicle networks [114]. 
 

4.4 Key Challenges 
 

• Limited bandwidth: Traditional CAN can struggle to handle the increasing data demands of modern 
vehicle systems, such as autonomous driving [25]. 

• CAN Bus overload: Increased data transmission risks communication delays, or data loss [129]. 
• Security vulnerabilities: CAN lacks encryption and authentication, making it susceptible to attacks 

where false data can be injected or manipulated. CAN is also highly vulnerable to DoS (Denial of 
service) attacks because of its design, which allows dominant bits to override the recessive ones [82]. 

• Ensuring compatibility with newer CAN protocols: Transitioning to CAN FD or CAN XL presents 
complexities and additional costs when used with legacy CAN systems. The newer protocols improve 
performance, especially in data rate and flexibility, but their co-existence with older CAN networks 
may lead to challenges [23,24]. 
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5 Intelligent Systems and Data-Centric Access 
 
The advent of smart vehicles has sparked significant interest in developing intelligent transportation systems 
(ITS) [7]. In smart cities, ITS is crucial in improving transportation safety, mobility, and environmental 
sustainability by utilising modern technologies like connected vehicles, autonomous vehicles, and intelligent 
traffic signals [44]. A critical component of ITS is the road-side infrastructure and the concept of vehicular 
edge-cloud computing [64, 65]. This section examines the necessity and implications of these technologies, 
drawing from the existing literature. 
 

5.1 Data-Centric AI/ML Development for SDV 
 
Modern vehicles contain numerous internal sensors that generate vast amounts of data. Commonly used 
sensors are cameras, LiDAR, radar [49, 132], and thermal cameras [36]. Multi-sensor fusion, deep learning, 
and other advanced methods can be used to combine data from different sensors [132]. The onboard 
diagnostic (OBD) system provides information on the inner workings of the vehicle, including details about 
engine speed and any potential Diagnostic Trouble Codes [104]. External data sources, including but not 
limited to weather information, maps, and transport management systems, will enable a multitude of 
applications for holistic traffic situations and operations. 
 
For ML/AI use cases, the data must be appropriate for the task and is often needed in large quantities from 
various different sensors and situations [35]. Data access usually involves connecting to the sensor, filtering, 
and cleaning the data. Accessing external data sources can be challenging, including varying levels of APIs and 
understanding and processing the data to a usable format. Various pre-processing, anonymisation, and 
cleaning procedures must be instituted [35]. Data collection may also be necessary if no suitable pre-made 
datasets are available, in which case a robust pipeline for data collection must be in place. Local data 
management must include how to store the data, which requires space, what data to store and delete, and at 
what point and what data is sent to the cloud. With the cloud, network latency and connectivity qualifications 
need to be considered. For ADAS applications, such as object recognition, datasets are already available; 
however, they do not always provide what is needed. For instance, the datasets focus primarily on images 
taken with a camera, and there is a lack of freely available data captured with other sensors. The subjects, 
situations, or the environment of the captured dataset might also not be what is needed, as common standards 
for data validation are limited. 
 
For companies already in the vehicular business, access to data can come through their customers and 
vehicles. For now, many OEMs use different sensing solutions, and data sharing requires standardisation of 
data formats [86]. Sharing data raises security concerns about data collection and, most importantly, the need 
for effective privacy preservation solutions. If data collection can take considerable time because of the need 
to drive the test vehicle(s) [89]. These datasets may need to be revised when new sensors become available 
on the market [89]. It is possible to use simulations and digital twins to collect data, as they are a safe and 
scalable option for testing. However, it remains unsolved how representative the data they provide [89] is of 
real life.  
 
Thus, using previously collected datasets or possibly finding openly available datasets can be a vast resource 
saver, especially for researchers or other developers who do not have access to manufacturer-collected 
datasets. Publicly sharing datasets could reap benefits for all automotive ML/AI developers if more effort could 
be spent on application development instead of repeatedly collecting the same type of datasets. The issue 
then becomes data (pre)processing and management. Then, it needs to be modelled and communicated so 
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that the data users know what the dataset contains. If the dataset is shared, an appropriate venue must be 
chosen. There are already several dataset-sharing sites, such as Roboflow, Hugging Face, and Kaggle. However, 
a dedicated data market or store is likely needed. This way, it would be more accessible to find datasets 
explicitly dedicated to this environment, and rules on dataset use could be established. 
 

5.2 Model Development and Training 
 
Model development and training can be challenging due to the size of the model. According to estimates from 
2022, several models were published with more than 70 billion parameters, and the number had been growing 
steadily, especially for models in the vision and language categories [121]. For instance, the image recognition 
models provided by Keras range from 14MB to a whopping 1310MB.  
 
Large size means the training time is longer and requires an increasing amount of computational resources. 
Training the model in a computing-restricted environment can thus become a challenge. Edge-cloud-
continuum can be utilised to provide computing capacity for model training, thereby speeding it up. Machine 
Learning as-a-Service (MLaaS) and utilising model repositories or marketplaces could be another option for 
avoiding the high training costs. Transference learning could also be utilised, allowing models created for one 
task to be finetuned for another. Many MLaaS providers exist, such as Microsoft Azure or Amazon’s AWS; 
however, incorporating the cloud introduces potential issues. Due to the connection to an external service, 
additional security risks must be considered. The connection itself may become an issue, for instance, in terms 
of data transfer times if the connectivity is slow or sporadic. The larger the data moving through the 
connection, the longer it would take, exacerbating the poor connection problem. The applicability of ready-
made models for automotive use cases must also be tested. For instance, Amazon’s AWS already has a 
marketplace for pre-made ML models; however, it is unclear without research how well these pre-made 
models would perform in the vehicular setting. For example, the currently existing and advanced language-
related models can be used to understand the driver’s speech and commands. In contrast, machine vision 
applications can differ significantly, for example, in industrial settings and driving scenarios. Vehicular-specific 
MLaaS and model sharing should be implemented to ensure that all vehicle features operate safely and 
efficiently. 
 
On the other hand, GPU units have been integrated into vehicles, increasing the processing capacity within 
them. For instance, Nvidia provides several different system-on-a-chip, which combine CPU and GPU power, 
such as the NVIDIA DRIVE AGX Thor10. This could enable functionalities such as (re)training ML/AI models 
inside the vehicle and immediately utilising the data acquired while driving. However, these types of solutions 
require a functioning data (pre-)processing pipeline to be in place for in-vehicle processing. There are costs 
associated with these additional chips, which could be reflected in the vehicle’s price. 
 
Personalisation of the ML/AI models is a key selling point for driver experience. It could be further explored 
to make vehicular applications a better fit for their respective drivers. Personalisation of the ML model trains 
the model to fit a particular individual, which can be achieved by using a dataset tailored to that individual, 
along with a global dataset [105]. Example use cases could include personalised route recommendations that 
consider the driver’s preferences, such as the type of scenery or driving conditions they prefer, pit stop 
frequency and location. Practical examples, however, are still largely missing from the literature, and more 
work should be done on how to personalise models. 
 
Privacy and Security are key factors when developing vehicular ML/AI models. Privacy must be considered 
with data collection, for instance, when (re)training the model. An example is the personalisation of the model, 
where data collection must be done ethically to preserve the right to privacy. A factor here is how much data 
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and model information is shared outside the vehicle. Security relates to, for instance, data collection from 
various vehicular sensors and systems, both within and outside the vehicle, as part of the vehicle-edge-cloud 
continuum. Regulations and privacy rules must be followed when collecting the dataset and creating the 
models. These vary between countries and legislative systems. However, specific consideration on the AI 
development in the European market has to be given to the AI Act, the European Regulation on Artificial 
Intelligence, and the European Cyber Resilience Act (CRA). 
 

5.3 Model Deployment and Inference 
 
Due to the large data sizes and computational capacity required to effectively train ML/AI models, the training 
and validation are often left to the cloud back-end. On the vehicular side, models are only deployed for 
inference. In addition to ADAS, vehicular ML examples include user behaviour estimation for electric vehicle 
(EV) charging behaviour [26] and other driver behaviour evaluation such as evaluating if the driver is distracted 
[130], anomaly detection [84] [112], securing the in-vehicle network [110] and other cyber-security related 
tasks such as intrusion detection [73]. In public transport vehicles, it has been proposed to use ML for 
estimating passenger experience from the vehicular data [64]. Other possible use cases for ML are 
personalised route recommendations [113], (emotion-aware) personal assistants [123], and context-aware 
recommendation systems for infotainment [53].  
 
However, some examples of ongoing learning processes on vehicles already exist. Reinforcement Learning (RL) 
has already been experimented on vehicles, for instance, for cyber-physical safety [34], navigation [61], and 
decision-making while on the road [133]. The performance of the ML models requires monitoring and possibly 
feedback to stay current and accurate. This is especially crucial for safety-critical systems, but non-safety-
critical features can also benefit from feedback to stay current and improve over time. In general, validation 
and testing must be performed to monitor the models. Adapting MLOps and AIOps for ML model development 
for SDVs could also be beneficial. However, these developments usually go hand in hand with other software 
DevOps processes and should not be considered stand-alone. With a Human-in-the-Loop (HITL-ML) approach, 
the driver can be integrated into the validation of the learning processes of different applications [33]. Driver 
feedback can be utilised to improve the functioning of the ML model, for example, by double-checking that 
the information is timely, services are functioning properly, and the human experience is satisfactory. 
 
 

5.4 Key Challenges 
 

• Safety and Reliability Challenge: ML and AI models, for instance, deep neural networks in SDVs, can 
act as complex black boxes, making it challenging for engineers to predict or interpret the proper 
behaviours of these models under complex and diverse conditions, thus raising serious safety concerns 
[17]. Current automotive functional safety standards do not fully cover all AI-based components. As 
such, the regulators and manufacturers remain cautious about deploying AI/ML in safety-critical 
scenarios [78]. Such uncertainty in decision-making makes it challenging to guarantee reliable 
performance and establish common verification and validation methods for AI-driven vehicle 
functions [78]. Consequently, comprehensive safety assessments are required before integrating 
AI/ML systems into production to ensure road-user safety [96]. 

• Data and Generalization Challenge: AI/ML models and systems in SDVs are often highly demanding in 
terms of data quality, quantity, and diversity. High-quality data availability is another challenge, for 
example, in data gathering and labelling. Acquiring quality and comprehensive datasets is costly, yet 
still prone to errors [96]. Furthermore, AI/ML models trained on limited scenarios and datasets can 
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introduce bias and fail to generalise. On top of that, real-world driving is affected by complex, diverse 
and even unexpected factors and situations (e.g., changing weather, lighting, or sensor conditions) 
that can degrade an AI model’s performance when over the training data [6]. 

• Real-Time Computation Challenge: Secondly, state-of-the-art AI/ML algorithms for perception and 
decision-making, such as advanced vision models or deep reinforcement learning, are computationally 
resource-demanding, which leads to another challenging context that, given the real-time and real-
world driving constraints on real-time responsiveness [6]. SDVs must process sensor inputs, run AI/ML 
inference, and execute control under millisecond limits. Conversely, the current advanced or complex 
models, although promising higher accuracy potential, often come at the cost of higher latency and 
computational load [17]. Therefore, ensuring the AI/ML models run reliably within the embedded 
systems of the SDVs (limited power, constrained processing and computation resources) stands out as 
another significant challenge to tackle [6] 
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6 Beyond the Vehicle: Software-defined Mobility Platforms 
 
The advent of smart vehicles has sparked significant interest in developing intelligent transportation systems 
(ITS) [9]. In smart cities, ITS is crucial in improving transportation safety, mobility, and environmental 
sustainability by utilising modern technologies like connected vehicles, autonomous vehicles, and intelligent 
traffic signals [59]. A critical component of ITS is the roadside infrastructure, as well as the concept of vehicular 
edge-cloud computing [91,92]. This section examines the necessity and implications of these technologies, 
drawing from the existing literature. 
 

6.1 Roadside Infrastructure 
 
Roadside infrastructure refers to the various sensors, communication devices, and computing resources 
installed along roadways [102]. These include roadside units (RSUs), which facilitate V2X communication, and 
various sensors that monitor traffic flow, environmental conditions, and infrastructure health. Intelligent 
roadside units, equipped with advanced sensors and communication modules, enable smart traffic control, 
environment perception, and vehicle-to-everything communication [5]. Roadside infrastructure and edge-
cloud continuum support the seamless operation of smart vehicles by providing real-time data and 
connectivity [108], expanding vehicular data capabilities from single-vehicle applications to connected, 
resourceful applications. 
 
Roadside infrastructure is crucial in enhancing road safety by facilitating real-time communication between 
vehicles and their surroundings. For example, RSUs can relay information about road hazards, traffic 
conditions, or weather changes to approaching vehicles, allowing them to adjust their behaviour accordingly. 
This infrastructure also facilitates traffic management by providing authorities with real-time data on traffic 
flow, which can be used to optimise traffic signals and reduce congestion. Additionally, while smart vehicles 
are equipped with a suite of sensors, there are limitations to what onboard sensors can detect, especially in 
challenging environments like urban canyons or during adverse weather conditions. Roadside sensors can 
augment vehicle sensing capabilities by providing a broader and more accurate picture of the surroundings, 
given that they are placed optimally to balance cost, redundancy, and coverage [120]. Moreover, roadside 
infrastructure enables cooperative driving, where multiple vehicles coordinate their actions to improve traffic 
flow and safety. This is particularly important for technologies such as platooning, where vehicles travel in 
close proximity at high speeds. RSU relaying enhances the performance of vehicle platooning by reducing 
communication link failures and inter-vehicle distances [39]. 
 
Despite the advantages mentioned, RSUs also have a couple of disadvantages. Firstly, deploying roadside 
infrastructure is capital-intensive, requiring significant investment in hardware and software. Maintenance 
costs are also substantial, particularly in urban areas where infrastructure is more prone to damage and wear. 
These costs can hinder widespread adoption, especially in developing regions [45]. Furthermore, as the 
number of smart vehicles increases, the demand for roadside infrastructure is expected to grow accordingly. 
Ensuring the infrastructure can scale to accommodate millions of connected vehicles is a significant technical 
and economic challenge. Furthermore, roadside infrastructure is a potential target for cyber attacks, which 
could disrupt ITS operations [30,122]. Ensuring robust cybersecurity measures is critical, but this adds to the 
complexity and cost of deployment. 
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6.2 Vehicular Edge-Cloud Continuum 
 
On the other hand, vehicular edge computing can be considered as a complementary approach to roadside 
infrastructure. Vehicular edge computing (VEC) involves offloading computational tasks from the vehicle to 
nearby edge servers [77], typically located within the roadside infrastructure, such as base stations. This 
approach reduces latency [71] and conserves onboard computing resources, making it a key enabler of real-
time applications in smart vehicles. Moreover, VEC allows vehicles to offload intensive computational tasks, 
such as image processing or AI-based decision-making, to edge servers. This conserves vehicle onboard 
resources and enables more complex applications that would otherwise be infeasible. Additionally, VEC can 
be scaled more easily than centralised cloud computing because it leverages distributed resources. Each edge 
server serves a localised area, reducing the overall burden on the network and making it easier to manage 
traffic spikes. 
 
Similar to roadside infrastructure, some cons are associated with vehicular edge computing. Deploying edge-
cloud computing resources is expensive [87]. The cost includes not just the edge servers themselves but also 
the necessary networking equipment and power supply. Furthermore, VEC introduces additional security risks, 
particularly in terms of data integrity and privacy [32]. Since data is processed at multiple edge nodes, there is 
an increased risk of interception or tampering, making it critical to implement robust security protocols. 
Besides, ensuring that different edge computing nodes can work together seamlessly is a significant challenge 
[95]. For example, a smart city with a dense network of autonomous vehicles, all connected through edge 
computing nodes to ensure real-time navigation, traffic updates, and safety monitoring, etc., will suffer from 
scalability if the volume of the exchanged data increases exponentially, and latency will also increase if various 
requests from vehicles overload edge nodes. If the edge nodes are not scalable or poorly coordinated, they 
may struggle to handle the surge in data and consequently experience increased latency. This requires 
standardisation across hardware and software platforms, which can be challenging given the diversity of 
stakeholders involved. 
 

6.3 Future Developments 
 
The necessity of roadside infrastructure and vehicular edge-cloud continuum computing depends mainly on 
the specific applications and the scale of the ITS deployment. The benefits of roadside infrastructure and VEC 
are clear for high-density urban areas, where real-time traffic management and safety are paramount. They 
provide the necessary support for advanced applications such as cooperative driving and real-time traffic 
optimisation. However, in less congested or rural areas, the cost and complexity of deploying such 
infrastructure may outweigh the benefits, especially if vehicles are equipped with sufficiently advanced 
onboard systems. 
 
Combining robust onboard vehicle systems with selective deployment of roadside infrastructure and vehicular 
edge-cloud continuum may offer the most practical and cost-effective solution. This would allow for the 
scalability and flexibility needed to accommodate a wide range of environments and use cases, ensuring that 
the benefits of smart vehicles are realised without imposing prohibitive costs. While roadside infrastructure 
and vehicular edge-cloud computing are not universally necessary, they are critical enablers of advanced ITS 
applications, particularly in high-density or safety-critical scenarios. Their deployment should be strategically 
planned, considering the immediate benefits and long-term sustainability of the ITS ecosystem. 
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6.4 Key Challenges 
 

• Architectural Challenges: Novel functionalities and rapid technological advancement in vehicles 
require more modular and flexible architectures that are not currently fully supported on the roadside 
and edge-cloud infrastructure. 

• Real-time Challenges: Required real-time computing presents complexities in ensuring secure and 
reliable systems across diverse systems and platforms. 

• Standardisation Challenges: Standardisation across OEMs and regions in the edge-cloud continuum 
for vehicular computing is essential for ensuring interoperability, scalability, and security in a globally 
connected automotive ecosystem. It enables seamless communication between vehicles, cloud 
platforms, and infrastructure by establishing common protocols and data formats, reducing 
fragmentation and promoting compatibility.  
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7 V2X Communications 
 
In the venture towards connected SDVs, reliable wireless V2X connectivity becomes useful to ensure real-time 
data communications in dynamic SDVs. Moreover, developing a middleware layer (see Figure 1) that can 
abstract the differences between the various communication standards can enable a unified software 
interface for V2X services and standardised message formats. Moreover, such a middleware layer can assist 
SDVs in connecting to the relevant network standard based on network availability and environmental 
conditions, thereby facilitating efficiency, interoperability, and consistency. 
 

7.1 Vehicular Communication Standardization 
 
The current standardisation focuses on addressing the general challenges in V2X-assisted driving, including 
achieving the timing and end-to-end communication latency, testing methodologies, network resource 
allocation, integrating network infrastructure, and maintaining transparency and trustworthiness in 
communications regarding safety, security, reliability, and resilience. In this regard, minimising communication 
latency and timing is essential, especially in time-critical scenarios. As per 6G network standards, the maximum 
latencies for critical applications should be under 1 ms, while those for information-sharing applications should 
be under 30 ms. Additionally, data rates must exceed 1 Gbps for 5G and 100 Gbps for 6G in V2X applications. 
 
 

 
Table 2: Comparison of Vehicular Communication Standards (3GPP C-V2X, ETSI ITS-G5, and DSRC). 

 
 
Vehicular communication standards, such as 3GPP C-V2X, ETSI ITS-G5, and DSRC, enable OEMs to adopt 
uniform standards for their communication interfaces. A comparison between the major V2X communication 
standards in terms of data security, encryption, authentication, communication modes, and frequency ranges 
is given in Table 2. Concerning the V2X communication standardisation, 3GPP C-V2X supports both direct 
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communication via the PC5 interface and network-based communication via the Uu interface. Further, C-V2X 
is considered the most adaptable standard for SDV due to its features that support integration with cloud and 
edge platforms. On the other hand, DSRC and ETSI ITS-G5 are primarily suited for localised safety applications 
using V2V and V2I, but their scalability and integration potential with SDVs are currently limited compared to 
C-V2X. Further, C-V2X offers greater flexibility in frequency allocation: C-V2X operates in the 5.9 GHz band 
(PC5) but utilises licensed bands and flexible channel allocation. On the other hand, both ETSI ITS-G5 and DSRC 
use the 5.9 GHz band with fixed 10 MHz channels, limiting their flexibility. 
 
In terms of security, C-V2X includes built-in encryption and authentication through LTE/5G protocols, offering 
data security and privacy. ETSI ITS-G5 and DSRC rely on Public Key Infrastructure (PKI)-based mechanisms for 
security. Moreover, C-V2X exhibits a higher latency and range than ITS-G5 or DSRC. C-V2X achieves a latency 
of 1 ms (PC5) and 10-20 ms (Uu), with a range of up to 1 km (direct). ETSI ITS-G5 and DSRC have similar latencies 
of less than 10 ms, but are limited to a range of 300 m. C-V2X can be integrated with edge computing (5G MEC) 
and cloud platforms, supporting dynamic updates for SDVs. ETSI ITS-G5 and DSRC have limited edge integration 
and require external cloud connectivity. In terms of scalability, C-V2X leverages cellular infrastructure, 
resulting in higher scalability. ETSI ITS-G5 and DSRC have moderate scalability with fixed ITS infrastructure. 
 
C-V2X supports a wider range of messages, including basic safety messages (BSM), cooperative awareness 
messages (CAM), decentralised environmental notification messages (DENM), and advanced cooperative 
perception messages in Rel-16/17. ETSI ITS-G5 and DSRC primarily support BSM, CAM, and DENM, with limited 
support for advanced services. In summary, C-V2X can be considered the communication standard of choice 
to support the needs of connected SDVs due to its features related to range, latency, security, and scalability, 
compared to DSRC and ETSI ITS-G5. These standardised message definitions are critical for interoperability, 
yet real-world deployment continues to face hurdles such as message security, transmission delays, and cross-
technology compatibility [19]. 
 

7.2 Towards Large-scale V2X Deployments 
 
Europe is at an early stage of commercial V2X deployment, and a significant challenge toward large-scale 
deployments has been the lack of consensus among industry players regarding the usage of a specific standard 
for communication. Nonetheless, V2X hardware providers, software providers, and cybersecurity companies 
have developed solutions compatible with several protocols, allowing deployment without compatibility 
concerns. While this hybrid approach can temporarily address interoperability issues, it is not a sustainable 
long-term solution, and many experts predict that one protocol will eventually prevail. For example, North 
America and China are expected to primarily converge on C-V2X by 2023, phasing out DSRC. In contrast, in 
Europe, OEMs such as Volkswagen use DSRC, while BMW and Daimler support C-V2X [12]. 
 

7.3 Key Challenges 
 

• Standardisation and Development Challenges: There is a lack of consensus on the V2X 
communication protocols, leading to fragmentation that may slow progress towards agreement on 
architectures and hinder application development. 

• Compatibility and Hardware Challenges: Achieving compatibility between multiple communication 
standards at the middleware layer is a significant technical challenge, which requires advanced 
hardware and further development. Large-scale deployments will require substantial investments in 
roadside infrastructure, V2X-capable transmitters and receivers, and compatibility with existing radio 
networks. 
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8 Validation and Verification 
 

8.1 SOA and Temporal Properties 
 
A service-oriented architecture (including microservices) is desirable for building flexible, modular systems 
where independent services interact to perform various functions. For software-defined vehicles, a prime 
example of service-oriented architectures would start with the data capture of each sensor, followed by the 
fusion of this data into a comprehensive representation of the vehicle and its environment. Depending on the 
conclusions drawn, the available information is transformed into actuator inputs, primarily steering angle and 
vehicle velocity. To implement the example above using a service-oriented architecture, the data (streams) 
must be carefully defined to reflect the nature of the underlying phenomena; furthermore, the transforming 
functions (services) must be composed of manageably sized subroutines. In this process, complex logic and 
interactions emerge due to subroutine invocations that direct data downstream while maintaining the 
required temporal system properties. 
 
Temporal properties are critical when verifying and validating vehicular and transportation systems. A vehicle’s 
response depends significantly on its intent, combined with the state of its environment. An example could be 
stopping a moving vehicle to let a passenger get out. Depending on whether the vehicle is currently travelling 
on the highway or on a rural road, we expect the vehicle’s behaviour to correspond to its environmental state. 
 
 

 
Figure 3: Visualising complexity in validation and verification processes. The image on the right represents a complex 
state-transition graph where each node corresponds to a system state, and each line represents a transition between 
states. The dense structure highlights the intricate interactions between the states, illustrating how the complexity 
increases as the number of elements and interactions grows. 
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8.2 Engineering Complexity: Specifying Validity and Implementing 

Verifiability 
 
If we ignore the fact that enumerating all these possible environmental conditions is next to impossible (see 
Figure 3), using conventional requirement engineering, it is even less likely that one can assert whether the 
goal for each condition is met using traditional development methods. Where the former relates to 
requirements gathering and specification, the latter refers to the system engineering aspect of Validation and 
Verification (V&V). The status quo concerning V&V is primarily based on reviewing requirements documents 
(validation) and testing (verification). This is insufficient to achieve an acceptable level of functional safety and 
security for the SDV. 
 

8.3 Current Methods and State of the Art (SOTA) Approaches for V&V in 

SOA 
 
This chapter explores current methods and state-of-the-art approaches for validation and verification in the 
context of Service-Oriented Architecture (SOA). These methods, individually or in combination, provide a 
foundation for automating V&V processes in complex, interdependent, distributed systems while addressing 
functional, safety, and timing requirements. 

• Formal Modelling Languages: An example is Verum Dezyne which develops a language for specifying, 
designing, and implementing requirements, with automated verification for completeness and 
correctness. Its key feature is stateful compositionality, ideal for systems like software-defined 
vehicles. Dezyne defines protocols and interactions through interfaces, ensuring safety and security. 
Components are formally verified using the mCRL2 model checker. Dezyne comes with built-in code 
generators. Ongoing work focuses on module specifications and integrating data for verification. 
Dezyne enhances validation through executable specifications, enabling system simulations and bug 
detection. 

• Model-Based Design (MBD): Model-Based Design is widely used in the development of embedded 
and control systems, offering visual modelling tools such as MATLAB Simulink and IBM Rational 
Rhapsody. MBD supports simulation and automatic code generation, allowing for iterative testing of 
the system’s functionality before implementation. In the context of SOA, MBD helps validate the 
interaction between services and the timing constraints that are critical for the system’s real-time 
operations.  

• Timed Automata and Formal Verification of Temporal Logic: For SOA systems, particularly in safety-
critical applications like autonomous vehicles, ensuring that services meet strict timing constraints is 
vital. Timed automata are used to model real-time systems, and tools such as UPPAAL enable formal 
verification of temporal properties. These methods provide guarantees that services not only function 
correctly but also adhere to timing requirements, a critical factor in real-time SOA applications. 

• Contract-Based Design and Verification: Contract-based design is a method used to specify formal 
agreements between different services in an SOA. These contracts define the expected inputs, 
outputs, and behaviours for each service. Using formal contracts ensures that services behave as 
expected and fulfil their roles in the system’s overall functionality. Tools such as OCRA (Othello 
Contract Refinement Analysis) allow developers to specify and verify the compliance of service 
contracts, ensuring consistency and correctness throughout the system. This approach is particularly 
useful in verifying that independently developed services meet predefined specifications when 
integrated into a larger SOA, supporting modularity and reducing integration risks. 
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8.4 Virtual Simulation and Digital Twins 
 
Virtual simulation is a key technology that should contribute to reducing the complexity of verifying and 
validating SDV products. Through virtualised driving environments, risk-critical safety simulations can be 
performed in a realistic manner without the need for extensive and expensive mechanical testing. Various 
open-source and commercial simulations for different purposes have been developed [69]; some of them 
focus extensively on sensor data flow, traffic conditions, vehicle dynamics, or control policies, decision-making, 
and control logic of autonomous vehicles. Probably the best-known and widely used, comprehensive simulator 
is CARLA [31], an open-source toolbox that provides urban layouts, buildings, vehicles, and maps. 
 
However, such simulation environments still lack support for integrating real-life data into the simulation 
pipeline, which is necessary to address data fidelity in diverse real-world scenarios [69]. To enable effective 
real-life data modelling, simulators should integrate the intake of recorded data from various fleets, data 
management pipelines, and accessible data formats for representation. In addition, in-depth testing of 
software components, particularly different ECUs, requires consideration of both hardware and software 
viability. One such initiative to bring hardware and software testing into the same loop is Eclipse openDuT, 
which aims particularly at grey-box tests for single ECUs or clusters of ECUs, as well as the adaptation and full 
functional integration of third-party components (proprietary and private source). These features are critical 
for even more realistic simulations in industrial use. 
 
Considerations have also been taken to adopt digital twinning technology for the vehicular use case [42]. 
Digital twins are well-known in other industrial sectors, particularly in manufacturing, and are capable of 
processing different scenarios based on real-world data flows. For now, most work has focused on utilising 
digital twinning technologies on vehicular design, evaluation, and deployment. However, for the complex and 
comprehensive verification and validation purposes of vehicular systems, even the current digital twins require 
greater maturity and adaptability in terms of safety, accuracy, and fidelity [107]. 
 

8.5 Continuous Testing and Validation 
 
The long lifespan of vehicles, spanning up to decades, necessitates special attention from a software 
engineering perspective for continuous testing, validation, and verification practices. Specific challenges 
identified for vehicular software development include, but are not limited to, integrating software and various 
hardware components, ensuring compatibility and code reusability across complex ECU architectures, and the 
safety-critical nature of all software components on vehicles, which necessitates reliability and security 
assurance [80]. In addition, covering the full software lifecycle, supported by Over-the-Air (OTA) software 
updates, remains one of the key challenges for SDV development [44]. As such, continuous testing of software 
and hardware components should be integrated into the architecture design and software engineering 
pipelines to comprehensively cover the full lifecycle of the vehicle. 
 

8.6 Key challenges 
 

• Full Automation Requirements: The V&V process must become fully automated by removing manual 
test execution and definition.  

• Early Specifications: Complete and comprehensive early specifications should be produced from the 
constituent part specifications, allowing early validation and verification throughout the engineering 
process. 
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• Integration of proprietary and open-source components in the same simulation, validation, and 
verification pipeline to increase their adaptability into industrial use cases. Such a pipeline should also 
enable black-box and grey-box validation and verification in a reliable manner, through understanding 
the components as part of a real vehicle. 

• Integration of simultaneous hardware and software testing on simulation environments to provide 
more realistic scenarios for failure, safety, and security testing. 

• Continuous testing, validation, and verification through the vehicle’s lifespan. 
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9 Building the Software Ecosystems 
 
The SDVoF initiative emphasises the creation of a robust ecosystem, integrating various stakeholders, 
including OEMs, suppliers, regulators, research institutions, and open-source communities. This ecosystem is 
structured around non-differentiating building blocks within the vehicle software stack, designed to facilitate 
collaboration and innovation. By fostering an open ecosystem built on open-source software solutions, the 
initiative aims to reduce redundant efforts and streamline the development of essential software components, 
accelerating the time-to-market for new features and improving cost efficiency. 
 
The SDVoF initiative’s roadmap and vision document [27] has identified some significant challenges the 
European automotive industry faces. The shift to autonomous, electric, and connected vehicles leads to 
increased software complexity, where vehicle code is expected to grow significantly, posing challenges to both 
development and maintenance. Customers increasingly demand new features and frequent software updates, 
which in turn increases the pressure for continuous innovation. Large tech companies dominate some key 
areas, creating dependencies for traditional OEMs. Additionally, non-EU manufacturers, such as Tesla, with a 
software-first approach, are creating competitive pressure. Transitioning from proprietary software and 
fragmented development initiatives to an open-source ecosystem centred around non-differentiating 
software solutions is essential for reducing inefficiencies and eliminating duplicated efforts. Collaborative 
efforts are necessary to establish an open SDV ecosystem and enhance the strategic autonomy of the 
European automotive industry. 
 
To support the European automotive industry’s strategic autonomy, the ecosystem encourages open-source 
solutions and reduces dependence on non-European technology providers. By fostering collaboration and 
leveraging shared resources, the industry can streamline its development processes and strengthen its global 
competitive position. To achieve this, it is crucial to connect existing initiatives and partners to avoid 
duplicating efforts and ensure the utilisation of existing building blocks and design patterns [27]: 
 

• AUTOSAR: A global partnership that develops standardised software frameworks and system 
architectures for intelligent mobility. 

• COVESA (Connected Vehicle Systems Alliance): Focuses on accelerating the potential of connected 
vehicles through collaboration. 

• SOAFEE (Scalable Open Architecture for Embedded Edge): An industry-led collaboration to create 
open-source architecture for software-defined vehicles. 

• Eclipse SDV: Provides an open technology platform for the software-defined vehicle to accelerate 
automotive software innovation through open-source communities. 

• Eclipse Arrowhead: Provides a robust framework based on Service Oriented Architecture (SOA) and 
microservices, which facilitates seamless interaction by enabling scalable and interoperable 
automation solutions. 

• Eclipse S-CORE (Establishing an Open Source Ecosystem for Software-Defined Vehicles): Modular, 
scalable, and standardised software architecture proposed by the Eclipse Foundation. 
 

Automotive Industry Associations: 
• ANFIA (Italian Association of the Automotive Industry): Represents automotive component 

manufacturers and other related industries in Italy. 
• PFA (Automotive Platform in France): Brings together the French automotive industry to implement 

sector strategies. 
• VDA (German Association of the Automotive Industry): Works on establishing the right conditions for 

automotive companies in Germany. 
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• EUCAR (European Council for Automotive R&D): Coordinates precompetitive research and 
development projects for major European automotive manufacturers. 

• CLEPA (European Association of Automotive Suppliers): Represents companies supplying components 
and technology for safe, smart, and sustainable mobility. 

 
However, transitioning from proprietary, siloed value chains to a robust ecosystem, connecting multiple 
partners with various interests and goals, is challenging. In traditional value chains, interactions and data flows 
are linear and controlled within predefined organisational boundaries. However, complexity increases as the 
scope shifts to an ecosystem with multiple actors contributing in a more open and interconnected 
environment. Standardising data acquisition and exchange across diverse participants becomes critical. [125] 
Additionally, governance becomes more complicated, extending beyond organisational boundaries [45]. 
Issues such as intellectual property rights (IPRs) related to data analytics and processing become increasingly 
pronounced, necessitating clear agreements and robust governance structures [125]. 
 
Engaging stakeholders in an ecosystem is crucial, as their commitment is necessary to achieve successful 
outcomes. If their internal priorities and needs are not addressed, there is a risk that critical actors may 
withdraw from the collaborative effort, endangering the entire initiative [46]. Partners must be open to 
collaborating and integrating into the ecosystem in a way that aligns with their own goals [112]. The ecosystem 
must be attractive enough to engage a critical mass of partners for effective outcomes [46]. Effective 
coordination of interrelated organisations with significant autonomy is central to ecosystems [45]. This 
coordination is achieved through processes, rules, and standards that help resolve issues and ensure alignment 
among participants [50]. Governance is necessary to manage the balance between fostering innovation and 
maintaining the ecosystem’s overall health, guiding development, and ensuring that collective efforts 
contribute positively to market demands [121]. 
 

9.1 Key Challenges 
 

• Diverse Stakeholders: Achieving seamless collaboration between diverse stakeholders, including 
manufacturers and regulators, is essential to ensure cohesive development and integration of 
systems. This includes understanding the diverse needs and perspectives of various stakeholders and 
fostering effective collaboration towards shared goals. 

• Long-term Engagement: Engaging stakeholders in an ecosystem is crucial, as their commitment is 
necessary to achieve successful outcomes. This includes ensuring the longevity of publicly financed 
initiatives and projects, as well as integrating collaboration activities into everyday work and business 
operations for the long term. 

• Ecosystem Governance is necessary to manage the balance between fostering innovation and 
maintaining the ecosystem’s overall health. Without a reliable governance strategy, the ecosystem 
will again become siloed and fragmented, hindering the progress of established collaboration and 
innovation. 
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10 Transformation Path 
 
Transforming towards an SDV ecosystem requires an approach involving various stakeholders, developers, and 
others in the development pipeline [112,125]. This transformation shifts from monolithic software stacks to 
dynamic systems using microservices and service-oriented architectures, impacting the entire product life 
cycle. The focus must be on both technical and societal aspects.  
 
The automotive industry is currently siloed, with large manufacturers managing both mechanical and software 
components. The transformation path must encompass vehicular software development, life cycle, and 
developer communities across all vehicles and manufacturers. The classic V model of software engineering 
process [96] is insufficient, necessitating changes in processes, tools, business models, value chains, and 
working methods. Responsibilities are shifting, requiring cooperation among development, operation, 
maintenance, and service providers. An SDV is a system of systems that involves parallel work and constant 
dialogue, requiring new skills and approaches. 
 
To implement these changes more efficiently, it makes sense to form communities and work together. 
Through a joint approach, whether in classic software development or by sharing new or existing software, 
many aspects can be simplified, become more cost-effective, and achieve higher quality. By involving multiple 
development partners, diverse perspectives and insights can be brought to projects, enhancing the overall 
outcome. This approach requires the participation of a variety of individuals involved in the value chain, from 
CEOs, who make a corresponding commitment and ensure the support and provision of resources, to the 
developers, who no longer work in isolated offices on individual solutions, but instead collaborate with 
partners from other departments, companies, or even industries to develop open, shared solutions. However, 
this transformation cannot happen overnight and must be integrated harmoniously into existing workflows, 
building on and supplementing current solutions. Successful transformation leads to healthy ecosystems, 
fostering innovation and new market entrants [121, 125]. 
 
Key aspects of the transformation path include identifying the defining characteristics of automotive software 
development pipelines and communities, learning from digital transformations in other industries, and 
involving diverse stakeholders in creating a roadmap. Activities may include training, community-building, and 
stakeholder engagement, with success measured by community engagement, software adaptation, product 
quality, and interoperability. 
 
Effective governance is essential, starting with identifying and engaging ecosystem actors and aligning their 
goals with the ecosystem vision [45, 46]. A governance structure integrating centralised, decentralised, and 
group-level elements will manage interactions, enhance collaboration, and promote innovation [45]. 
Evaluating performance across boundaries supports collaboration and integration, ensuring collective efforts 
align with common goals while respecting individual business interests. This governance aims to minimise 
duplicated efforts, optimise development, and enhance cost efficiency.   
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11 Conclusions 
 
In this gap analysis and technology forecast report, we have highlighted the key challenges that must be 
addressed to ensure the successful outcomes and continuity of the European Software-Defined Vehicle 
Initiative's future endeavours. In addition to technical gaps, there are those related to ecosystem maintenance, 
governance, and health that are especially critical for long-term success. This report will be updated during 
the FEDERATE project as outcomes from the research, innovation, and development actions come through.   
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